
LESSON 19 - STUDY GUIDE

Abstract. In this lesson we focus on pointwise convergence of Fourier series. In the first part, we study

pointwise convergence of summability methods, which have better properties and therefore stronger
theorems. In the second part we concentrate on the convergence of partial sums, proving some of the

most celebrated classical theorems for convergence of Fourier series at a point.

1. Pointwise convergence of Fourier series.

Study material: For the first part, we will closely follow the section 3 - Pointwise Convergence of
σn(f) from chapter I - Fourier Series on T, corresponding to pgs. 17–21 in the second edition [1] and
pgs. 18–22 in the third edition [2] of Katznelson’s book. In the second half, we cover part of the section
2 - Convergence and Divergence at a Point from chapter II - The Convergence of Fourier
Series, corresponding to pgs. 52–54 in the second edition [1] and pgs. 73–75 in the third edition [2].

For this lesson we will finally look at pointwise convergence of Fourier series. Pointwise convergence
results in the theory of Fourier series tend to be the most difficult to prove and the deepest. The reason
should now be obvious, because the most robust form of pointwise summation of trigonometric series is
absolute convergence, which does not depend on the oscillating exponentials and therefore is equivalent
for all points t ∈ T. However, in spite of its optimal and ideal appeal, we saw in the previous lesson that
absolutely convergent Fourier series correspond only to a very small subset of the continuous functions
on T. Therefore, if we want to address the general question of pointwise convergence of Fourier series of
arbitrary functions in L1(T) we certainly need to consider mostly conditionally convergent series, where
the oscillations of complex exponentials play an important role, and the convergence might change from
point to point.

For such an unstable form of convergence it is no wonder that proofs are hard. For example, if we look
at the general theorem for the convergence of convolutions with approximate identities, Theorem 1.2 in
Lesson 10, we could only prove pointwise convergence for continuous functions there, in which case it is
uniform. And, as we already know, pointwise convergence almost everywhere cannot be extracted from
the convergence in Lp norm, as this only guarantees it for some subsequence. We will see, as we proceed
further along the course, that pointwise convergence proofs do exist for this general setting of convolutions
with approximate identities, but they require much more sophisticated machinery, in particular the use
of the Hardy-Littlewood maximal function. So, if not even for approximate identities are there relatively
straightforward proofs of general pointwise convergence, then, should the same type of results hold for
partial sums of Fourier series, one can only expect them to be much more difficult to establish because
they correspond to convolution with the Dirichlet kernel.

1.1. Pointwise convergence of Cesàro and Abel means. We will start, thus, by studying pointwise
convergence of summability methods of Fourier series. As we saw in Lesson 15, summability methods have
much better convergence properties than partial sums, because they are convolutions with approximate
identities, and one should expect stronger pointwise convergence results as well, even though they do not
directly follow from the general properties seen before, in Lesson 10.
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2 LESSON 19

One such result is due to Fejér, obtained by exploiting specific properties of the kernel that today
carries his name.

Theorem 1.1. (Fejér) Let f ∈ L1(T). Then

(1) If the limit lim
h→0

f(t0 + h) + f(t0 − h)

2
exists, including the possibility of being +∞ or −∞, then,

the Cesàro means converges at t0 to this value

lim
N→∞

σN (f)(t0) = lim
N→∞

KN ∗ f(t0) = lim
h→0

f(t0 + h) + f(t0 − h)

2
.

In particular, if f is continuous at t0, then σN (f)(t0)→ f(t0) when N →∞.
(2) If f is continuous on a closed subset F ⊂ T then σN (f)(t) converges uniformly to f(t) for t ∈ F .
(3) If m ≤ f(t) a.e. t ∈ T then m ≤ σN (f)(t) for all t ∈ T and N ∈ N. Likewise, if f(t) ≤ M a.e.

t ∈ T then σN (f)(t) ≤M .

Proof. The Fejér kernel is an approximate identity made up of positive even functions. Besides, they
satisfy a stronger supremum (L∞) condition than condition (3) in Definition 1.1, in Lesson 11. In fact,
the Fejér kernel satisfies, for any 0 < δ < π

(1.1) lim
N→∞

( sup
|t|≥δ

KN (t)) = 0,

which implies the weaker L1 form limN→∞
∫
|t|≥δ |KN (t)|dt = 0 in that definition.

(1) Following Katznelson, we denote by f̌(t0) = lim
h→0

f(t0 + h) + f(t0 − h)

2
and when it is finite, we

have

σN (f)(t0)− f̌(t0) =
1

2π

∫
T
KN (s)f(t0 − s)ds− f̌(t0)

=
1

2π

∫
T
KN (s)f(t0 − s)ds−

1

2π

∫
T
KN (s)dsf̌(t0)

=
1

2π

∫
T
KN (s)

[
f(t0 − s)− f̌(t0)

]
ds

=
1

2π

∫ π

−π
KN (s)

[
f(t0 − s)− f̌(t0)

]
ds.

Now, using the fact that KN (t) = KN (−t), we write this last integral as

1

2π

∫ π

−π
KN (s)

[
f(t0 − s)− f̌(t0)

]
ds =

1

π

∫ π

0

KN (s)

[
f(t0 + s) + f(t0 − s)

2
− f̌(t0)

]
ds,

and because f̌(t0) = lim
h→0

f(t0 + h) + f(t0 − h)

2
, given arbitrarily small ε > 0, we can chose δ such

that

|s| < δ ⇒
∣∣∣∣f(t0 + s) + f(t0 − s)

2
− f̌(t0)

∣∣∣∣ < ε,

to break up the integral in two

1

π

∫ δ

0

KN (s)

[
f(t0 + s) + f(t0 − s)

2
− f̌(t0)

]
ds+

1

π

∫ π

δ

KN (s)

[
f(t0 + s) + f(t0 − s)

2
− f̌(t0)

]
ds.

with the first bounded by ε while the second integral is made small by the property (1.1) of the
Fejér kernel, for N sufficiently large, so that we finally have

|σN (f)(t0)− f̌(t0)| ≤ ε+ ε‖f(·)− f̌(t0)‖L1(T).
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For the final case, when f̌(t0) = lim
h→0

f(t0 + h) + f(t0 − h)

2
is infinite, then one just has to look

only at the integral

σN (f)(t0) =
1

π

∫ π

0

KN (s)

[
f(t0 + s) + f(t0 − s)

2

]
ds,

and by splitting it in two integrals, the first from 0 to δ and the second from δ to π, in the same
way as above, show that the first will become arbitrarily large as the infinite f̌(t0), when N →∞,
while the second is bounded by ε‖f‖L1(T) as before.

(2) This is totally analogous to part (3) of Theorem 1.2, in Lesson 11, for approximate identities,
by noticing that F is compact for being a closed subset of a compact space T. Therefore,
from the Heine-Cantor theorem, continuity of f on F implies uniform continuity, and the proof
proceeds from there exactly as in Theorem 1.2, by converting uniform continuity of f into uniform
convergence of KN ∗ f on F .

(3) This last property only uses the positivity and unit integral of the kernel, and not even the fact
that it is an approximate identity. So, writing the difference σN (f)(t)−m from the convolution
with the kernel

σN (f)(t)−m =
1

2π

∫
T
KN (s)f(t− s)ds−m

=
1

2π

∫
T
KN (s)f(t− s)ds− 1

2π

∫
T
mKN (s)ds

=
1

2π

∫
T
KN (s) [f(t− s)−m] ds ≥ 0,

and likewise for the difference M − σN (f)(t).

�

A few observations are in order. The first one is that the proof of Fejér’s theorem depends only on
the fact that the approximate identity kernel is positive, even and satisfies the stronger condition (1.1).
So the same conclusion holds for any other approximate identity kernel that satisfies these same extra
conditions. That is the case with the Poisson kernel used for Abel summability. Therefore we also have
the following.

Corollary 1.2. The same result as in the previous theorem holds if, instead of Cesàro means and the
Fejér kernel, one uses Abel means and the Poisson kernel, respectively.

Another important conclusion has to do with functions of bounded variation. It is well known, from
basic measure theory, that BV functions on intervals of the real line can always be written as differ-
ences of two increasing functions that can have, at the most, a countable number of jump disconti-
nuities, and for which lateral limits always exist at every point. So if f ∈ BV (T) then, the limit

lim
h→0

f(t0 + h) + f(t0 − h)

2
=
f(t0+) + f(t0−)

2
always exists at every t0 ∈ T, where f(t0+) and f(t0−)

are the right and left limits at t0, respectively.

Corollary 1.3. Let f ∈ BV (T). Then, for every t0 ∈ T

lim
N→∞

σN (f)(t0) =
f(t0+) + f(t0−)

2
.

Of course, if the lateral limits f(t0+) and f(t0−) exist, then the limit lim
h→0

f(t0 + h) + f(t0 − h)

2
will also exist and equals the average of the two. But the converse is not necessary and might not
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be true. So we can have, say, an odd function like f(t) = sin(1/t) which is L1(] − π, π]) = L1(T)
and for which the lateral limits f(0+) and f(0−) do not exist. Nevertheless, because f(t) = −f(t) then

lim
h→0

f(0 + h) + f(0− h)

2
= 0 and so Fejér’s theorem, still aplies here at t0 = 0, with limN→0 σN (f)(0) = 0.

Of course, this particular case is trivial because KN (t) is even, while f(t) is odd so that σN (f)(0) actually
is zero for all N , but slightly more complicated examples could still as easily be constructed.

A final important conclusion that follows from Fejér’s theorem is just a consequence of the elementary
fact that, if a sequence converges, then the corresponding sequence of its arithmetic means also converges
to the same limit. It is the pointwise result concerning the necessary value of the limit of partial sums of
Fourier series, analogous to Corollary 1.2 in Lesson 15: if we know beforehand that the partial sums of
the Fourier series converge, then the limit necessarily has to be the same as that of the Cesàro means.

Corollary 1.4. Let f ∈ L1(T) such that the limit lim
h→0

f(t0 + h) + f(t0 − h)

2
exists. Then, if the Fourier

series converges at t0 its sum is necessarily equal to this limit. In particular, if f is continuous at t0 ∈ T,
and the Fourier series of f converges at that point, then its sum necessarily equals f(t0).

Now, in spite of its simplicity, Fejér’s condition that the limit

(1.2) lim
h→0

f(t0 + h) + f(t0 − h)

2
= f̌(t0)

exists is not very robust, for we can easily change f on a set of points in T with zero Lebesgue measure,
which does not affect the Fourier coefficients, and consequently does not change the Cesàro means σN (f)
anywhere, but could easily disrupt the existence of this limit at any point t0 ∈ T, making Fejér’s theorem
completely useless. So, a condition in terms of integration of f , and not on pointwise values, that remains
invariant under modifications of the function on sets of zero measure, should be better suited. And in
fact, Fejér’s condition (1.2) implies that

(1.3) lim
h→0

1

h

∫ h

0

∣∣∣∣f(t0 + s) + f(t0 − s)
2

− f̌(t0)

∣∣∣∣ ds = 0.

This condition, called Lebesgue condition, is therefore more general than Fejér’s and is robust under
modifications of the function a.e. in T. In fact, we will see later in the course, that this condition holds
with f̌(t0) = f(t0) at almost every t0 ∈ T. The points where that happens are called the Lebesgue points
of f . By developing the machinery of maximal operators precisely with the goal of proving pointwise
almost everywhere convergence of sequences of Lp functions and approximate identities, we will be able
to establish quite general theorems. For now, we will simply state Lebesgue’s pointwise convergence
theorem of the Cesàro means under condition (1.3).

Theorem 1.5. (Lebesgue) Let f ∈ L1(T) satisfy (1.3) at a point t0 ∈ T, for some value f̌(t0). Then
limN→∞ σN (f)(t0) = f̌(t0). In particular, knowing that the Lebesgue condition is actually satisfied a.e.
t0 ∈ T with f̌(t0) = f(t0), we have that limN→∞ σN (f)(t) = f(t) a.e. t ∈ T.

Proof. We will prove a general version of these types of results later in the course, once we develop the
theory of maximal operators. A direct proof of this theorem can be found in Katznelson [1] pg.20, or [2]
pg.21. �

Interestingly, this theorem now yields a very powerful uniqueness result based on pointwise convergence
of Fourier series, again from the fact that if the limit of a sequence exists, than it has to be the same as
that of its arithmetic means, combined with the almost everywhere aspect of Lebesgue’s condition. So
just as Corollary 1.4 above follows immediately from Fejér’s theorem, we now obtain the following much
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stronger result as a consequence of Lebesgue’s theorem. It is the pointwise almost everywhere analogue
of Corollary 1.2 in Lesson 15.

Corollary 1.6. Let f ∈ L1(T) be such that its Fourier series converges almost everywhere on a set of
positive measure E ⊂ T. Then its sum coincides with f almost everywhere on that set. In particular,
if a Fourier series converges to zero almost everywhere on T, then necessarily it is the Fourier series of
the zero function. Or still, if two Fourier series converge pointwise almost everywhere on T to the same
values, then they are the Fourier series of the same function (as equivalence classes in L1) and necessarily
their coefficients are all equal.

We have thus established uniqueness of representation by pointwise almost everywhere convergent
Fourier series. In Corollary 1.2 in Lesson 15 we did not write the analogue of this second, uniqueness
representation, part of the statement, even though it was similarly true there. The reason was that we
proved Proposition 1.3 right afterwards, in that same lesson, by using a different method not related
to the convergence of Cesàro means, in which we obtained a much broader uniqueness result for the
representation of functions by any trigonometric series converging in L1(T), with the coefficients neces-
sarily having to be the Fourier coefficients of the function to which the series converges. Here, though,
for pointwise almost everywhere convergence, we can only establish uniqueness of representation among
Fourier series, because in fact uniqueness does not hold for general trigonometric series: there exist
nonzero trigonometric series that converge almost everywhere on T to zero.

It is worth pausing for a second at this point to discuss the question of uniqueness of representation
of functions by trigonometric series with a bit more depth than we have done, for a couple of times, in
previous lessons. This problem was first raised by Riemann, in his Habilitationsschrift on Fourier and
trigonometric series where, among other things, he developed the definition of what we now call the
Riemann integral, to rigoroulsy compute the Fourier coefficients of very general functions, and proved a
first version of the Riemann-Lesbesgue Lemma for his definition of integral. With a breakthrough idea,
instead of asking which properties should a function possess to be representable by its Fourier series, he
inverted the problem to the question of asking which properties should a trigonometric series posses in
order to represent a function. The set of objects of study becomes considerably larger, for, recall from
Lesson 17 for example, that there exist trigonometric series converging at every point t ∈ T to functions
which are not in L1(T) and for which it does not even make sense to talk about Fourier series. The whole
field became known as Riemann’s theory of trigonometric series and the particular problem of uniqueness
of representation of functions by trigonometric series became known as Riemann’s uniqueness problem
(Zygmund’s book [3], for example, has a whole chapter, IX - Riemann’s Theory of Trigonometric
Series dedicated to this area).

A set E ⊂ T is called a set of uniqueness, or a U-set, if pointwise convergence of a trigonometric
series in its complement implies uniqueness, i.e. if

∑∞
−∞ cne

int = 0 for t 6∈ E implies cn = 0. If that is
not the case, that pointwise convergence in the complement of E does not guarantee uniqueness of the
coefficients, i.e. if there are nonzero trigonometric series converging to zero for t 6∈ E, then the set E
is said to be a set of multiplicity, an M-set, or a Menshov set. Of course, the larger E is, the harder it
should be to guarantee uniqueness by pointwise convergence outside of it.

Riemann himself proved that the empty set E = ∅ is a set of uniqueness. That is the same as saying
that if a trigonometric series converges pointwise for all t ∈ T then its coefficients are unique. Riemann’s
proof uses some properties of integration of Fourier series term by term and can be found in Zygmund’s
book [3], in the same chapter mentioned above, page 326.

Theorem 1.7. Let
∑∞
n=−∞ cne

int be a trigonometric series such that, for all t ∈ T the sequence of its
partial sums converges to zero. Then, cn = 0 for all n ∈ Z.
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Georg Cantor then famously pursued this same problem and proved that for E countable and closed,
uniqueness still holds. It was in the process of studying these questions that Cantor developed the theory
of sets and cardinality for which he became known. Finally, Menshov, in 1916, provided an example of
a nonempty set of multiplicity with zero measure, effectively destroying the conjecture that pointwise
almost everywhere convergence of trigonometric series would be enough to ensure the uniqueness of the
coefficients. So there do exist examples of nonzero trigonometric series converging pointwise almost
everywhere to zero, which of course are not Fourier series, and they can be added to any other Fourier
series to yield nonunique trigonometric series representing the same function almost everywhere.

To finish this section, we mention that a pointwise almost everywhere convergence result is equally true
for the Abel means, with the Poisson kernel. But actually, it can proved with an even weaker condition
than Lebesgue’s (1.3),

(1.4) lim
h→0

1

h

∫ h

0

(
f(t0 + s) + f(t0 − s)

2
− f̌(t0)

)
ds = 0,

which actually holds with f̌(t0) = f(t0) whenever the function equals the derivative of the integral, and
that we know is almost everywhere from measure theory.

Theorem 1.8. (Fatou) Let f ∈ L1(T) satisfy (1.4) at a point t0 ∈ T, for some value f̌(t0). Then

lim
r→1

Pr ∗ f(t0) = lim
r→1

∞∑
n=−∞

r|n|f̂(n)eint0 = f̌(t0).

In particular, this is true almost everywhere t0 ∈ T, with f̌(t0) = f(t0).

Proof. Again see Katznelson [1] pg.21, or [2] pg.22. �

1.2. Pointwise convergence of partial sums of Fourier series. As pointed out at the beginning,
if pointwise convergence of approximate identities, or even specific summability methods exploiting par-
ticular properties of concrete kernels like Fejér’s or Poisson’s, is not straightforward, then the same type
of results for the much more badly behaved Dirichlet kernel can only be much harder to obtain. In
fact, pointwise almost everywhere convergence of the partial sums of Fourier series, even for continuous
functions, constitute some of the hardest and deepest problems in Fourier analysis, of which Carleson’s
theorem stands out as the most celebrated example.

For now, we will settle with some more elementary results on specific convergence at a general point.
With that goal, we start by rewriting the partial sums in a more convenient form:

N∑
n=−N

f̂(n)eint = DN ∗ f(t) =
1

2π

∫
T
DN (t− s)f(s)ds =

1

2π

∫ π

−π
DN (t− s)f(s)ds,

and now expanding the Dirichlet kernel to try to take advantage of specific properties

(1.5) DN (t) =

N∑
n=−N

eint =
sin(N + 1

2 )t

sin t
2

=
sin(Nt) cos( t2 ) + cos(Nt) sin( t2 )

sin t
2

=
sinNt

tan t
2

+ cos(Nt),

we obtain

(1.6)

N∑
n=−N

f̂(n)eint =
1

2π

∫ π

−π

sinN(t− s)
tan t−s

2

f(s)ds+
1

2π

∫ π

−π
cosN(t− s)f(s)ds.
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Now, the second term here is easily seen to be unimportant, a sort of error term, as it converges uniformly
to 0 as N →∞, for we can write it as

(1.7)
1

2π

∫ π

−π
cosN(t− s)f(s)ds = cos(Nt)

1

2π

∫ π

−π
cos(Ns)f(s)ds+ sin(Nt)

1

2π

∫ π

−π
sin(Ns)f(s)ds,

and while | cos(Nt)|, | sin(Nt)| ≤ 1 uniformly for t ∈ T, the integral terms converge to zero as N → ∞
because of the Riemann-Lebesgue lemma. As for the first term in (1.6) we write it as

(1.8)
1

2π

∫ π

−π

sinN(t− s)
tan t−s

2

f(s)ds =
1

π

∫ π

−π

sinN(t− s)
t− s

f(s)ds

+
1

2π

∫ π

−π
sinN(t− s)

(
1

tan t−s
2

− 2

t− s

)
f(s)ds,

and we can now use the fact that∥∥∥∥ 1

tan t−·
2

− 2

t− ·

∥∥∥∥
L∞(T)

=

∥∥∥∥∥ 1

tan (·)
2

− 2

(·)

∥∥∥∥∥
L∞(T)

,

is independent of t to conclude that the function(
1

tan t−s
2

− 2

t− s

)
f(s),

is in L1(T) in the s variable, uniformly for t ∈ T. So that we can again argue as in (1.7) to conclude that
this term also converges to 0 uniformly in t ∈ T as N → ∞. Finally we use the fact that sinNt/t is an
even function to write the first term in (1.8) as

1

π

∫ π

−π

sinN(t− s)
t− s

f(s)ds =
1

π

∫ π

−π

sin(Ns)

s
f(t− s)ds =

2

π

∫ π

0

sin(Ns)

s

(
f(t+ s) + f(t− s)

2

)
ds

so that, putting everything together, the partial sums of the Fourier series can be written more efficiently
as

(1.9)

N∑
n=−N

f̂(n)eint =
2

π

∫ π

0

sin(Ns)

s

(
f(t+ s) + f(t− s)

2

)
ds+ o(1),

where o(1) denotes a term that converges to zero uniformly in t ∈ T as N → ∞: the whole information
about the convergence of the partial sums is encoded in this integral.

A first result that we can immediately extract from this formula is the localized character of the
convergence of Fourier series. In spite of the Fourier coefficients being the result of integrals taken over
the whole of T, if two functions coincide on an open neighborhood of a point t0 then their Fourier series
either diverge or converge identically at t0.

Proposition 1.9. (Riemann’s Principle of Localization) Let f ∈ L1(T) vanish in an open interval
I ⊂ T. Then its Fourier series converges to zero at every t ∈ I and uniformly on compact subsets of I.

Proof. From (1.9) we see that, if f vanishes on the open interval I and t ∈ I, then we have∫ π

0

∣∣∣∣1s
(
f(t+ s) + f(t− s)

2

)∣∣∣∣ ds <∞,
and so, from the Riemann-Lebesgue lemma we conclude that the right-hand side of (1.9) converges to
zero.
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Besides, if K ⊂ I is compact, and t ∈ K then, the family of functions

φt(s) =
1

s

(
f(t+ s) + f(t− s)

2

)
,

form a compact subset of L1(T). And the Riemann-Lebesgue lemma then holds uniformly1 for that
compact subset of L1(T), implying uniform convergence to zero of the partial sums, for t ∈ K. �

Using the same type of ideas, the following is one of the most celebrated criteria for convergence of
Fourier series at a point.

Theorem 1.10. (Dini’s Test) Let f ∈ L1(T) and suppose there exists a constant A such that∫ π

0

∣∣∣∣f(t+ s) + f(t− s)
2

−A
∣∣∣∣ dss <∞.

Then,
∞∑

n=−∞
f̂(n)eint = lim

N→∞

N∑
n=−N

f̂(n)eint = A.

Proof. The result follows simply by applying the same reasoning as in the localization principle to the
function g(t) = f(t)−A. This criterion then implies that, at this fixed t ∈ T we have∫ π

0

∣∣∣∣1s
(
g(t+ s) + g(t− s)

2

)∣∣∣∣ ds <∞,
and therefore that the Fourier series of g converges to zero at t, which is the same as the convergence of
the Fourier series of f to A. �

A very important corollary of Dini’s test is the uniform convergence of Fourier series of Hölder contin-
uous functions. Recall, from Bernstein’s theorem presented in the previous lesson, that only for Hölder-α,
with α > 1/2, could we guarantee absolute convergence. Uniform convergence, though, holds for any
positive α.

Corollary 1.11. Let f ∈ C0,α(T) be Hölder-α continuous, for any 0 < α ≤ 1. Then the Fourier series
of f converges uniformly to it on T.

Proof. Hölder-α continuous functions satisfy

|f(t)− f(s)| ≤ C|t− s|α,

for some C ≥ 0 and all t, s ∈ T. But this implies∣∣∣∣f(t+ s) + f(t− s)
2

− f(t)

∣∣∣∣ 1

s
≤ |f(t+ s)− f(t)|

2s
+
|f(t− s)− f(t)|

2s
≤ C

s1−α
,

which is integrable in s ∈ [0, π] independently of t. And we can therefore use Dini’s test uniformly for all
t ∈ T with A = f(t) at every point. �

1If K ⊂ L1(T) is a compact family of functions, then, given arbitrarily small ε, K can be covered by a finite number of

balls of radius ε centered at trigonometric polynomials {Pj}1≤j≤n, because of their density in L1(T). Thus, every f ∈ K
satisfies ‖f − Pj‖L1(T) < ε for some Pj . And picking the largest degree N = max1≤j≤n(degree Pj) among these finite

polynomials, then |f̂(n)| ≤ ε for all f ∈ K, and |n| > N , establishing the Riemann-Lebesgue property uniformly for all K.
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It should be emphasized how this set of results all hinge on properly understanding oscillatory integrals,
of which the Riemann-Lebesgue lemma is the prototypical example that we have used repeatedly. At the
root of all these theorems is the integral in (1.9)

2

π

∫ π

0

sin(Ns)

s

(
f(t+ s) + f(t− s)

2

)
ds,

which is obviously an oscillatory integral due to the presence of the sin(Ns) term. Pointwise convergence
of Fourier series then boils down “simply” to showing that this integral converges to zero as the frequency
of the oscillations N increases to infinity

Finally we notice that the presence of the averages f(t+s)+f(t−s)
2 is a consequence of the Dirichlet kernel

being an even function with respect to the origin. This is something that had already been observed in
the pointwise convergence of the summability methods, at the beginning of this lesson. Of course if the
limit

lim
s→0

f(t+ s) + f(t− s)
2

= f̌(t),

exists, then necessarily the constant A in Dini’s test will have to be f̌(t), although the existence of this
limit just by itself is not a sufficient condition for Dini’s test to be satisfied. This is something that we
already knew from Fejér’s theorem at the beginning of the current lesson: if the limit exists, then the
Cesàro means converge to it and, necessarily, so will the partial sums of the Fourier series, in case it
converges. The problem rests, obviously, in the fact that, although the arithmetic means of a sequence
always converges to the same limit if the original sequence converges, nevertheless the means might still
converge with the sequence diverging.

As we already have at our disposal quite strong theorems establishing pointwise convergence of the
Cesàro means, it would be extremely useful if we could somehow go in the reverse direction, and from the
convergence of arithmetic means conclude the convergence of the original sequence. As this is generally
false, extra conditions should be imposed on the sequence for such type of inverse results to hold: stronger
conditions make the conclusion easier, while weaker assumptions can turn the proofs of these type of
reverse results extremely hard. This kind of results, where convergence of sequences is obtained from
convergence of their arithmetic means are called Tauberian theorems. We close today’s lesson with an
important Tauberian theorem due to Hardy, that relates the convergence of the Cesàro sums with the
partial sums of the Fourier series.

Theorem 1.12. (Hardy’s Tauberian theorem) Let f ∈ L1(T) be such that its Fourier coefficients
decays as n−1 i.e.

|f̂(n)| ≤ C

n
,

for some positive constant C > 0, when |n| → ∞. Then the Cesàro means σN (f)(t) = KN ∗ f(t) and the
partial sums SN [f ](t) = DN ∗ f(t) both converge on the same set of points t ∈ T and to the same values.
If the convergence of the Cesàro means is uniform on some set, so will be the convergence of the partial
sums.

Proof. The decay condition implies that, for every ε > 0 there exists a λ > 1 for which

lim sup
N→∞

∑
N≤|n|≤λN

|f̂(n)| < ε.

The proof really only relies on this estimate. Of course, with the demanded decay, for this to work we
just need to take λ < 1 + ε, for large N .
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The following relation then exists between the terms of the partial sums of the Fourier series and the
terms of the Cesàro means,

(1.10) SN [f ](t) =

N∑
n=−N

f̂(n)eint =
[λN ] + 1

[λN ]−N
σ[λN ](f)(t)− N + 1

[λN ]−N
σN (f)(t)

− [λN ] + 1

[λN ]−N
∑

N<|n|≤λN

(
1− n

[λN ] + 1

)
f̂(n)eint,

where [λN ] denotes the integer part of λN . From the previous condition, the last term on the right
hand side, with the block of frequencies between N and λN of the Cesàro means, is smaller than ε for
N sufficiently large. The first two terms can be grouped as

[λN ]σ[λN ](f)(t)−NσN (f)(t)

[λN ]−N
+
σ[λN ](f)(t)− σN (f)(t)

[λN ]−N
,

so that if we subtract σN (f)(t) from both sides of (1.10) we get, for large N

|SN [f ](t)− σN (f)(t)| ≤
∣∣∣∣ [λN ]σ[λN ](f)(t)−NσN (f)(t)

[λN ]−N
+
σ[λN ](f)(t)− σN (f)(t)

[λN ]−N
− σN (f)(t)

∣∣∣∣+ ε

≤

∣∣∣∣∣ [λN ]
(
σ[λN ](f)(t)− σN (f)(t)

)
[λN ]−N

∣∣∣∣∣+

∣∣∣∣σ[λN ](f)(t)− σN (f)(t)

[λN ]−N

∣∣∣∣+ ε,

and thus, by making N even larger, this can be made smaller than 2ε.
Clearly, from the right-hand side of this estimate we can see that the difference |SN [f ](t)−σN (f)(t)|, in

terms of its dependence on t, only changes with the pointwise rate of convergence of σN (f)(t). Therefore,
if the convergence of the Cesàro means is uniform for t on a particular subset of T, so will be the
convergence of the difference, from the above estimate. And thus of SN [f ](t). �

One of the better known results about pointwise convergence of Fourier series follows from a direct
application of Hardy’s Tauberian theorem. For functions of bounded variation, we know from Theorem
1.4 in Lesson 17 that their Fourier coefficients decay precisely as n−1 while, on the other hand, from
Corollary 1.3 above, we know that their Cesàro means converge at every point to the average of the
lateral limits, which always exist. So an application of the previous theorem yields the following.

Corollary 1.13. Let f ∈ BV (T). Then, for every for every t0 ∈ T the partial sums of the Fourier series
of f converge and we have

lim
N→∞

SN [f ](t0) = lim
N→∞

N∑
n=−N

f̂(n)eint0 =
f(t0+) + f(t0−)

2
.

In particular, if f ∈ BV (T) is continuous at t0 then its Fourier series converges to f(t0) and the conver-
gence is uniform on compact subsets of continuity. And so, the Fourier series of absolutely continuous
functions on the whole circle T, i.e. f ∈ C(T) ∩BV (T), converge uniformly to f on T

The well known theorem by Dirichlet, about the pointwise convergence of Fourier series of piecewise
C1 functions, usually taught in elementary Calculus courses on a first encounter with Fourier series, is a
particular case of this one. And it can also be easily proved from Dini’s test.
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